Wafer-Scale Production of Transition Metal Dichalcogenides and Alloy Monolayers by Nanocrystal Conversion for Large-Scale Ultrathin Flexible Electronics

Jihoon Kim, Hyojin Seung, Dohun Kang, Joodeok Kim, Hyoenuh Bae, Hayoung Park, Sungsu Kang, Changsoo Choi, Back Kyu Choi, Ji Soo Kim, Taeghwan Hyeon, Hoonkyung Lee, Dae-Hyeong Kim,* Sangdeok Shim,* and Jungwon Park*

Cite This: Nano Lett. 2021, 21, 9153–9163

ABSTRACT: Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are unit-cell thick materials with tunable physical properties according to their size, morphology, and chemical composition. Their transition of lab-scale research to industrial-scale applications requires process development for the wafer-scale growth and scalable device fabrication. Herein, we report on a new type of atmospheric pressure chemical vapor deposition (APCVD) process that utilizes colloidal nanoparticles as process-scalable precursors for the wafer-scale production of TMD monolayers. Facile uniform distribution of nanoparticle precursors on the entire substrate leads to the wafer-scale uniform synthesis of TMD monolayers with the controlled size and morphology. Composition-controlled TMD alloy monolayers with tunable bandgaps can be produced by simply mixing dual nanoparticle precursor solutions in the desired ratio. We also demonstrate the fabrication of ultrathin field-effect transistors and flexible electronics with uniformly controlled performance by using TMD monolayers.

KEYWORDS: transition metal dichalcogenides, nanoparticle precursor, wafer-scale growth, transition metal dichalcogenide alloys, ultrathin flexible electronics

Transition metal dichalcogenide (TMD) materials with controlled compositions are attractive materials for electronics and catalysis.1−3 This is because atom-thick TMD monolayers present unique properties in terms of exciton dynamics, the valley Hall effect, and the indirect-to-direct bandgap transition,4−7 different from their bulk counterparts. In addition, varying the size and morphology of TMDs provides opportunities to tune the reactivity, which further enhances their potential in practical applications.8−10 However, challenges in wafer-scale production of uniform TMD monolayers with respect to the size, morphology, and composition restrict the transformation from lab-scale research to industry-level applications in electrocatalysis, electronics, and optoelectronics.

In recent years, diverse TMD preparation methods, such as mechanical exfoliation, liquid exfoliation, and vapor−solid growth,11−14 have been developed. Among them, chemical vapor deposition (CVD) is the most compatible method with wafer-scale processing of 2D materials. Although metal−organic CVD (MOCVD) is a typical method for the TMD growth,15,16 it requires several hours of complicated processes and the use of metal−organic precursors, which are toxic and expensive. Atmospheric pressure CVD (APCVD) is an attractive alternative, because it facilitates scalable TMD growth in simple and cost-effective manner.17,18 Nevertheless, the control of size, morphology, and composition of the TMD monolayers is hampered by difficulties in the stable and ratio-controlled supply of constituent monomers by sublimation and vaporization of multiple powder precursors. Thus, the key challenge for the desired wafer-scale growth of TMD monolayers is how to achieve uniform nucleation and growth of the layers in a short time throughout the substrate by using precursors with sufficient reactivity, nontoxicity, and wafer-process compatibility.

Received: August 3, 2021
Revised: October 19, 2021
Published: October 22, 2021
Herein, we develop a versatile APCVD process for wafer-scale controlled growth of TMD monolayers based on the conversion chemistry of nanoparticle precursors. Attributed to the colloidal stability and high reactivity of nanoparticles, uniform distribution of a minimum amount of precursors and homogeneous and fast growth of TMD monolayers by solid–vapor–solid transition on inch-scale substrates are accomplished. This method is readily extended to the wafer-scale TMD alloy growth with varied compositions, such as Mo$_{1-x}$W$_x$S$_2$, with a tunable bandgap energy, simply by using mixed nanoparticle precursors. Moreover, the uniform MoS$_2$ film grown by our method enables the large-scale fabrication of field-effect transistors and their application to ultrathin flexible electronics with uniform performance over the entire substrate.

The overall process for the wafer-scale TMD growth is described in Figure 1a. Monodisperse transition metal oxide nanoparticle synthesis & spin coating followed by chemical vapor deposition (CVD) leads to the growth of TMDs on wafer-scale substrates. Uniform synthesis of MoS$_2$ monolayer flakes and continuous film is achieved with high coverage, circularity, and grain size uniformity as shown in Figure 1b–g. Figure 1h–k demonstrates the growth of MoS$_2$ on various substrates, including sapphire, Si/SiO$_2$, soda-lime glass, and Si/SiN$_x$ wafers.

Figure 1. Uniform synthesis of MoS$_2$ monolayer flakes and continuous film. (a) Schematic of the entire synthetic process. (b) Photograph of a 2 in. wafer after the synthetic process and OM images of MoS$_2$ layers from positions b$_1$ to b$_8$. Scale bar, 10 μm. (c) Raman and PL spectra of MoS$_2$ monolayers from positions b$_1$ to b$_8$. Dashed lines indicate the characteristic peaks of MoS$_2$ monolayer. (d) Averaged grain size, coverage, and circularity of thousands of MoS$_2$ layers from positions b$_1$ to b$_8$. (e) Plot of edge length and grain size of individual MoS$_2$ flakes from positions b$_1$ to b$_8$. Schematics and beige dots indicate ideal branched and triangular shapes, respectively. (f) Photograph of a 2 in. wafer covered by continuous MoS$_2$ film and PL spectral point mapping data of the film. (g) Raman spectra (line-scan along x (red arrow) and y (blue arrow) directions shown in part f) of the continuous film. (h–k) OM images of MoS$_2$ monolayer flakes grown on sapphire, Si/SiO$_2$, soda-lime glass, and Si/SiN$_x$ wafers. Scale bars, 10 μm.
nanoparticles, such as MoO$_2$ and W$_{18}$O$_{49}$, are prepared in a large scale by colloidal synthesis (Figure S1) and stored in a solution as precursors for TMD synthesis.19,20 The average size of the MoO$_2$ nanoparticles is 56.36 nm (Figure S2). The precursors are deposited on a 2 in. wafer by spin coating, which is facilitated by the colloidal stability of the nanoparticles. To obtain the desired coverage of the nanoparticles, the concentration of the solution and the rotational speed of the spin coating are controlled (Figure S3). A uniform distribution of nanoparticles over the substrate is easily achieved without any thermal and high-vacuum systems typically used for pretreatment of the precursors, confirmed by scanning electron microscopy (SEM) (Figure S4). The substrate with the loaded nanoparticles and sulfur powder are inserted into two different furnaces in CVD for independent heating (Figure S5). The CVD process on a substrate with a tilted angle toward the direction of carrier gas (growth mode 1 in Figure 1a) provides a uniform supply of the sulfur precursor and yields TMD monolayers with controlled density.

As a representative example of growth mode 1, the wafer-scale growth of MoS$_2$ is demonstrated, and confirmed by the consistency in the optical microscopy (OM), Raman scattering, and photoluminescence (PL) spectra that are obtained from different positions of the substrate, marked as b$_1$–b$_8$ (Figure 1b). The Raman spectra of the layers from multiple positions of the substrate, excited by a 532 nm laser, are uniform and exhibit that the difference of two characteristic peaks (E_{1g} and A_{1g}) of the MoS$_2$ monolayer is approximately 19 cm$^{-1}$ (Figure 1c), which is consistent with the reported value.21 Strong and uniform peaks in the PL spectra also indicate that MoS$_2$ layers are monolayered and highly crystalline.22,23 Furthermore, the projected area and perimeter of thousands of MoS$_2$ monolayers throughout the wafer are extracted by image processing of OM images using home-built MATLAB codes. The averaged grain size and coverage of the layers from different positions are uniform and close to 5.992 μm2 and 0.0951, which are the mean grain size and coverage over the inch-scale wafer, respectively (Figure 1d). We also

Figure 2. Synthesis and characterizations of Mo$_{1-x}$W$_x$S$_2$ alloy monolayers. (a) FFT-filtered HAADF-STEM images of Mo$_{1-x}$W$_x$S$_2$ monolayers. Scale bar, 1 nm. Intensities are normalized by MATLAB code, and images are color-mapped by normalized intensity (right, color bar). (b) Raman spectra of Mo$_{1-x}$W$_x$S$_2$ monolayers. Schematics (inset) show the vibrational modes of MoS$_2$ and WS$_2$ monolayers. Dashed lines indicate the characteristic Raman peaks of MoS$_2$ and WS$_2$ monolayers. (c) PL spectra of Mo$_{1-x}$W$_x$S$_2$ monolayers with the controlled compositions. (d) Plot of the measured optical bandgap energies of Mo$_{1-x}$W$_x$S$_2$ monolayers (x, 0–1). Calculated bowing parameter is (0.24 ± 0.05) eV.
investigate the morphological uniformity of the layers by measuring their circularity. The average circularity of the layers from different positions is close to 0.8473 (mean value). Furthermore, the plots between the grain size and the edge length measured in positions b1−b8 consistently follow the trend expected for the ideal triangular monolayer (Figure 1e). These results demonstrate the uniform growth of triangular monolayers throughout the substrate. To examine the epitaxial behavior between as-grown MoS2 and sapphire substrate, orientations of MoS2 layers from the positions b1 to b8 are extracted by using MATLAB codes (Figure S6). Histograms in Figure S6 present that randomly oriented MoS2 monolayers are grown in our process, although the grains aligned 30° and 90° with the [1100] direction of the sapphire substrate are dominant. This is because the sulfur precursor is moderately supplied in our growth process, and the alignment can be

![Figure 3](https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c02991)MoO2 transformation and MoS2 growth processes. (a) HRTEM images and schematics of MoO2 nanoparticles and underlying grown MoS2 with the progress of sulfurization. Scale bars, 50 nm. (b, c) HRTEM images, corresponding FFT patterns, and inverse FFT patterns of MoO2 crystals and MoS2 domains. Scale bars, 20 nm. MoO2 and MoS2 are marked by (green and orange) and (blue and magenta) circles, respectively. Insets are masked FFT patterns for each crystal. (d) Atomic models for MoO2 and MoS2 crystals arranged with rotation angles of (0 and 30)°. MoO2 and MoS2 domains are aligned to zone axis (Z.A.) [010] and [0001], respectively. (e) DFT calculation of binding energy between MoS2 and the underlying MoO2 crystals with different rotation angles.

![Figure 3](https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.1c02991)
Further tuned by controlling the supply rate of the sulfur precursor. Nanoparticle precursors mixed with NaCl (growth mode 2 in Figure 1a) promote the growth of the extended TMD film, due to the catalytic effect of sodium. Due to the large surface-to-volume ratio and resulting high reactivity of the nanoparticles (Table S1), only 0.608 mg of MoO3 and 0.152 μg of NaCl for MoS2 are used for the continuous film growth on the 2 in. wafer. The uniformity of PL spectral point mapping (400 points; point interval, 1 mm) and Raman line-scan data (120 points along the x and y directions; point interval, 0.25 mm) indicates that a continuous MoS2 monolayer film is uniformly grown over the entire substrate (Figure 1fg). Coverage of the MoS2 continuous film is measured by SEM, demonstrating the near full coverage throughout the entire wafer substrate (Figure S7). Merged grains in the film are coherently connected without overlapping, confirmed by dark-field TEM imaging (Figure S8). Grain size of the film is generally 10 μm with a small population of small domains (~1 μm). Grain boundary structures are also investigated by Cs-corrected STEM analysis (Figure S9). We confirm that the merged grains are well stitched at the boundaries, regardless of their crystallographic orientations and the presence of a small portion of the incoherent boundary. The MoS2 growth from MoO3 nanoparticles is also demonstrated for other types of substrates, including Si/SiO2, soda-lime glass, and Si/InN, proving the versatility of nanoparticle precursors (Figure 1h–k).

Compositional control of the TMD monolayer is a versatile method of manipulating the electronic structure and tuning the bandgap energy. However, in the conventional CVD process, it is difficult to precisely control the stoichiometry of the TMD monolayer because the multiple powder precursors are loaded in different chambers whose thermal conditions are independently controlled, and the growth relies on their complex sublimation and transport processes. We demonstrate that our method can overcome this problem. Because the metal precursors are directly supplied on the substrate where the TMD monolayer is to grow, loading two different nanoparticle precursors facilitates improved compositional control of the TMD alloys. We synthesize Mo1−xWxS2 (x, 0–1) monolayers by using a dual-precursor of molybdenum oxide and tungsten oxide nanoparticle solutions that are easily mixed and uniformly deposited on the substrate, attributing to the colloidal stability of the mixed nanoparticle precursors. Simple mixing of the dual-precursor with different concentrations (Table S2) allows the Mo1−xWxS2 alloy growth with controlled compositions. High-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM) is employed to visualize the arrangement of Mo and W atoms in Mo1−xWxS2 monolayers with the compositional variation, where the intensity is dependent on the atomic number (Figure 2a). The ratio between W and Mo is estimated by counting the number of bright (W) and dark (Mo) atoms from multiple atomic-resolution HAADF-STEM images.

Raman spectra of the WS2 and MoS2 monolayers show the characteristic peaks of E2g and A1g for both materials (Figure 2b). Mo1−xWxS2 alloy monolayers show the characteristic peaks of both MoS2 and WS2 with changing relative intensities and peak positions between them, which correspond to the metallic composition. Most notably, PL measurements confirm that the bandgap energy is successfully tuned by the synthesis of Mo1−xWxS2 alloys with the controlled compositions (Figure 2c). The bandgap energies of the Mo1−xWxS2 alloy monolayers match well with the bowing effect (Figure 2d), following the given eq 1:

\[E_{PL,Mo1-xWxS2} = (1 - x)E_{PL,MoS2} + xE_{PL,WS2} - bx(1 - x) \]

where x is the tungsten (W) composition; E_{PL,MoS2}, E_{PL,WS2} and E_{PL,Mo1-xWxS2} are the measured optical bandgap energies of MoS2, WS2, and Mo1−xWxS2 monolayers, respectively; and b is the calculated bowing parameter of (0.24 ± 0.05) eV, which is the same as the reported value. These results prove that the bandgap energy of the Mo1−xWxS2 alloys is successfully tuned by the compositional change of randomly distributed atoms by using a dual-precursor.

We investigate the role of MoO3 nanoparticles as precursors for MoS2 growth by using high-resolution transmission electron microscopy (HRTEM) of different growth stages. MoS2 and MoO3 nanocrystals from the different stages are transferred onto TEM grids by the surface-energy-assisted transfer method and imaged by HRTEM (Figure 3a). In the early stage of sulfurization, polycrystalline MoO3 nanoparticles spread out and increase the size in the lateral direction of the substrate and continuously transform into nanocrystals with single or twinned domains (Figure S10a). MoS2 monolayer is then nucleated and grows at the bottom of the MoO3 nanoparticle that acts as a self-seeding material. During the sulfurization, MoO3 nanoparticles are constantly consumed by adjacent growing MoS2 monolayers, which is indicated by the diminishing size of the particles. Cross-sectional view of the intermediate MoO3 particles with underlying MoS2 monolayer indicates the pancakelike morphology of the intermediate particle (Figure S10b). After exhaustion of the particle, MoS2 monolayers are synthesized on the substrate, confirmed by fast Fourier transform (FFT).

For further understanding of how MoO3 nanoparticles determine the growth process of MoS2 monolayers, HRTEM images of the intermediate stages where both materials coexist are analyzed. We intentionally use an excess supply of sulfur as a means to protect and capture the intermediate MoO3 particles by covering them with the multilayer MoS2 shell. It facilitates further HRTEM analysis of the intermediate stages during the growth. The HRTEM image in Figure 3b shows a single-crystalline MoO3 nanoparticle with the underlying MoS2 monolayer. Indexing the FFT pattern based on the measured distances of lattice planes and their relative angles indicates the monoclinic MoO3 nanocrystal aligned into the [010] zone axis (Z.A.). Interestingly, the {1010} planes of the MoS2 strongly correlate with the (002), (200), and (202) planes of monoclinic MoO3 (green—blue paired circles). Spatial arrangement of the MoO3 nanoparticle and the growing MoS2 monolayer is visualized by inverse FFT obtained from independently masked FFT patterns for the two materials (inset). In addition, FIB (focused ion beam)-HRTEM analysis presents that (020) planes of the intermediate MoO3 particle (nucleation seed) are aligned with the (0001) plane of the sapphire (Figure S11), which is consistent with Figure 3b. The MoS2 growth from a MoO3 nanoparticle composed of twinned domains further confirms that the growth behavior of MoS2 is determined by the MoO3 nanoparticle (Figure 3c). Two domains of the MoO3 nanocrystal are independently correlated with two MoS2 layers grown adjacent. Both domains of the twinned MoO3 nanocrystal expose specific planes along the
The (002), (200), and (202) planes of one MoO₂ domain with the Z.A. [010] are associated with the orientation of the underlying MoS₂ monolayer in a consistent way, as observed in Figure 3b (green−blue paired circles). The orientation of the MoS₂ monolayer from another twinned MoO₂ domain with the Z.A. [010] rotated by 30° (orange−magenta paired circles). Inverse FFT patterns of the two domains of MoO₂ and the independently grown MoS₂ monolayers represent their arrangements. Furthermore, density functional theory (DFT) calculation reveals energetically preferred orientations in the growth of MoS₂ {1010} on MoO₂ (200) (Figure 3d,e). A local minima of the binding energy are observed at around (0 and 30)° rotation angles, which is consistent with the experimental data.

The functionality of the TMD monolayer in various applications can be improved by controlling the size and morphology. We demonstrate that the size and shape of MoS₂ monolayers can be easily tuned by manipulating the growth parameters, confirmed by quantitative analysis of MoS₂ layers from different parameters that include the growth time, precursor concentration, and substrate type. With prolonged growth time, MoS₂ on sapphire increases the average grain size while maintaining triangular morphologies with marginal truncation of corners, and the proportion of small grains is gradually reduced, as indicated by the OM images and plots in Figure 4a. The MoS₂ growth on soda-lime glass is initiated by densely packed nucleation sites, possibly due to the catalytic characteristic of the substrate. The growth results in multiple-branched morphology with the increased size, as it is highly kinetically controlled (Figure 4a). In both cases, ripening of preformed domains occurs in the late stage of sulfurization, since the monomer concentration is locally limited, which allows the consumption of unstable small grains by adjacently growing monolayers. Furthermore, the ratio of molybdenum to sulfur manipulates the edge structure of the layer, resulting in different morphologies. The shape evolution associated with the sulfur concentration is investigated with OM images and circularity. The OM images and measured
circularities, shown in Figure 4b, show that in high sulfur concentrations, sharp triangular layers become round-shaped layers with rough edge interfaces. The effect of the ratio of the two precursors is more obvious in the MoS$_2$ growth on soda-lime glass. The molybdenum-dominant environment induced by the limited sulfur supply promotes the growth of layers with sharp edges, indicated by the low circularity (0.564). In contrast, with an excess of sulfur, MoS$_2$ monolayers show highly dendritic morphologies with relatively homogeneous size distribution, presumably by suppression of the ripening process.48,49 The schematics of Figure 4c summarize the size and shape evolution process of the MoS$_2$ monolayer on different substrates.

The uniform wafer-scale synthesis of the MoS$_2$ film offers great potential for high-performance electronic and optoelectronic devices, including flexible electronics.50,51 To demonstrate such potential, the as-grown MoS$_2$ film is transferred from a sapphire wafer to various desired substrates (e.g., silicon oxide wafer, flexible polyimide substrate), and various devices are fabricated. For the transfer printing, our modified transfer method is applied,42 facilitating the intact transfer of the MoS$_2$ film onto the desired substrate without any noticeable wrinkles (Figure S13).

Figure 5. Characterization of MoS$_2$ transistors, ultrathin logic circuits, and phototransistors. (a) Transfer curves at $V_{ds} = 1$ V. (b) Output characteristics. (c, d) The distribution of on/off ratio, on-current (c, left and right axis), and field-effect mobility (d) measurements from 100 random devices. (e) Photograph of the ultrathin logic circuits and phototransistors attached on human skin. The left inset shows a photograph of the ultrathin device wrinkled on human skin. The right inset shows a schematic of ultrathin MoS$_2$ FETs. (f, g) Transfer curves of the ultrathin MoS$_2$ FET (f) and inverter (g) before wrinkling (green) and after wrinkling (pink). $V_{dd} = 5$ V. Inset shows the voltage gain. Scale bars (inset), 200 μm. (h–k) Output characteristics of NAND (h), NOR (i), and AND gates (j) at $V_{dd} = 5$ V and SRAM (k) at $V_{dd} = 2$ V. Scale bars (inset), 200 μm. (l) Transfer curves under the dark and different light intensities (532 nm). (m) Time-resolved photocurrents under different light intensities at $V_{ds} = 1$ V and $V_g = -10$ V. (n) The ratio of photocurrent to dark current under different light intensities. (o) The distribution of dark current and photocurrent under A light intensity of 0.64 mW/cm2 measured from a 10×10 phototransistor array.
In order to investigate the uniformity of the MoS₂ film, we fabricate a batch of MoS₂ field-effect transistors (FETs) (3078 transistors shown in Figure S14a). The MoS₂ FET has a bottom-gate structure (Figure S14b). A brief description of the fabrication procedure is as follows. First, the MoS₂ film is transferred onto a 2 in. SiO₂/Si wafer (300 nm thick SiO₂ layer on a Si wafer). Then, the film is patterned by photolithography and dry etching. Afterward, Ti/Au layers (5 nm/25 nm) are deposited by thermal evaporation and patterned by the lift-off process to form source/drain electrodes. Finally, Al₂O₃ is deposited by the atomic layer deposition (ALD) process to form a passivation layer (20 nm). Transfer curves (IОН−IOFF) and output current characteristics (IOUT−Isett) of a representative transistor (channel length and width, 5 and 60 μm) are shown in Figure S5a,b. The key device features include the field-effect mobility (μFE) of 4.13 cm²/V s, off-current (Ioff) of 37 fA, on-current (Ion) of 39.9 μA, and an on/off ratio of 10⁶. The device characterization data, such as Ion, Ioff, on/off ratio, μFE, and threshold voltage (VTH), are collected from 100 randomly selected transistors. The transfer curves of the transistors are shown in Figure S14c,d. Figure 5c shows the on/off ratio (left axis) and Ion (right axis) with a mean value of 10⁶ and 21.9 μA, respectively. Figure 5d shows the μFE data, whose average, standard deviation, and maximum are 2.64 cm²/V s, 0.8 cm²/V s, and 5 cm²/V s, respectively. The threshold voltages are mostly in the range of 0−5 V (Figure S14e).

Based on the uniform MoS₂ FETs, we fabricate an ultrathin flexible type of logic circuit (e.g., inverter, NAND gate, NOR gate, AND gate, and SRAM) and phototransistors. Due to their ultrathin flexible nature, the devices have the potential for skin-mounted electronics (Figure 5e). Detailed layouts of the circuits and phototransistor are shown in Figure S15. As illustrated in Figure 5e (right inset), the ultrathin MoS₂ FET has a top-gate structure that consists of polyimide/silicon nitride (PI/Si₃N₄) substrate (420 nm/25 nm), MoS₂ monolayer channel, Ti/Au source/drain electrodes (5 nm/25 nm), Al₂O₃ dielectric layer (25 nm), Ti/Au gate (5 nm/25 nm), and parylene film for the top encapsulation (500 nm). Due to the intrinsic softness of the MoS₂ film and the ultrathin device thickness (~1 μm), the devices are tolerable against external mechanical deformations (Figure 5e, left inset). For example, the transfer characteristics show minimal changes under its mechanical deformation (Figure 5f). A transfer curve (VOUT−VIN) of the inverter is shown in Figure 5g. The inverter shows a voltage gain of 18.5 at VOUT = 5 V, and stable operation, even under its wrinkled state. Other types of logic gates are also fabricated by using the ultrathin FETs and inverters as building blocks (Figure S16). The NAND gate and NOR gate consist of a transistor and an inverter (Figure Sh,i). The AND gate is the combination of a NAND gate and an inverter (Figure 5j). These logic gates exhibit the output logic state of either “0” (0 V) or “1” (5 V), according to four states of two inputs (e.g., (0,0), (0,1), (1,0), and (1,1)) with VOUT = 5 V. SRAM, which is a flip–flop memory cell, consists of two cross-coupled inverters (Figure 5k). When the input is set to “1” at 0 s or “0” at 80 s, the logic state becomes “0” or “1”, respectively. The logic state can be maintained for 50 s, even after the input is opened at 30 or 110 s, exhibiting stable memory performance. The reliable operation of logic gates corroborates the potential of the MoS₂ film for applications to large-scale integrated circuits.

Besides applications to flexible electronics, MoS₂ can be applied to flexible optoelectronics, such as photodetectors, by utilizing its high photoabsorption coefficient. A 10 × 10 array of ultrathin phototransistors is fabricated (Figure S17a). The transfer curves (IОН−Iff) of a representative phototransistor illuminated by 532 nm light is shown in Figure S1. The time-resolved photocurrent responses are measured at Vg = −10 V by gradually increasing light intensities, showing light-sensitive current responses (Figure S5m). Typically, the MoS₂ phototransistor features residual photoconductivity due to charge trapping, even after the light illumination is removed. Therefore, trapped charges are released every 150 s by applying a positive gate bias to maintain a low level of dark current (~1 nA). The ratio of photocurrent (Iff) to dark current (Iff) is proportional to the intensity of the illuminated light (Figure S5n). The photoresponsivity is 556 A/W at a light intensity of 0.11 mW/cm² (Figure S17b). Iff and Iff of 100 devices in the array are measured under a light intensity of 0.64 mW/cm² (Figure S5o), whose mean values are 1.52 nA and 1.31 μA, respectively, and thus Iff/Iff is ~10⁵.

We develop a wafer-scale controlled synthetic process of TMD monolayers, which utilizes transition metal oxide nanoparticles as precursors. Facile deposition of precursors with uniform coverage on the inch-scale substrate facilitates the reproducible and massive production of TMD monolayers. The use of different mixing ratios of the dual-precursor, such as MoO₂ and W₆O₁₉ nanoparticles, enables one to manipulate the composition of the Mo₁₋ₓWₓS₂ alloys, which allows the wafer-scale production of 2D materials with a tunable optical bandgap. Furthermore, our method can be widely applied to the mass production of various 2D materials, with controllability in terms of the coverage, morphology, and doping level. Ultrathin field-effect transistors and flexible electronic devices with uniform performance are fabricated by utilizing the continuous MoS₂ film, which demonstrates versatile device applications of TMD monolayers obtained from the new synthetic process.

ASSOCIATED CONTENT

Supporting Information

Experimental section and supporting data such as TMD growth, characterization, DFT calculation, and device fabrication (PDF)

AUTHOR INFORMATION

Corresponding Authors

Jungwon Park — Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea; orcid.org/0000-0003-2927-4331; Email: jungwonpark@snu.ac.kr

Sangdeok Shim — Department of Chemistry, Sunchon National University, Sunchon 57922, Republic of Korea; orcid.org/0000-0001-5887-565X; Email: san90@scnu.ac.kr

Dae-Hyeong Kim — Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University,
Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.1c02991

Author Contributions

J.K. (Jihoon Kim) and J.P. planned the research. J.K. (Jihoon Kim), H.S., S.K., B.K.C., J.S.K., T.H., S.S., and J.P. discussed and/or acquired the data. H.S., C.C., and D.-H.K. fabricated the ultrathin flexible electronics and transistors. D.K., H.B., and H.L. performed the DFT calculation. J.K. (Jihoon Kim), J.K. (Joodeok Kim), and H.P. conducted the image processing. J.K. (Jihoon Kim), H.S., D.-H.K., and J.P. wrote the manuscript. D.-H.K., S.S., and J.P. supervised the research. All authors contributed to the discussion of results.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is dedicated to the people fighting against the ongoing Coronavirus disease (COVID-19) pandemic. H.S., C.C., T.H., D.-H.K., and J.P. acknowledge the Institutes for Basic Science (Grants IBS-R006-D1 and IBS-R006-A1). J.P. acknowledges the National Research Foundation of Korea (NRF) grant, funded by the Korea government (MSIT) (Grant No. NRF-2017R1A1A105365, Grant No. NRF-2020R1A2C101871, and Grant No. NRF-2019M3E6A1064877), the Ministry of Trade, Industry & Energy (MOTIE) and the Korea Semiconductor Research Consortium (KSRSC) support program for the development of future semiconductor devices (Grant No. 10080657). J.K., D.K., J.K., H.P., S.K., B.K.C., J.S.K., and J.P. acknowledge the financial support from LG Chem Open Innovation Fund and Korea Toray Science Foundation. Characterization of the materials was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA2002-03.

REFERENCES

Aligned Growth of Monolayer MoS2 and In-Plane Heterostructures with Graphene on Sapphire. ACS Nano 2018, 12 (10), 10032−10044.

