Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM

Jongbaek Sung, Back Kyu Choi, Byunghoon Kim, Byung Hyo Kim, Joodeok Kim, Donghoon Lee, Sungin Kim, Kisu Kang, Taeghwan Hyeon, and Jungwon Park

Abstract: Defining the redox activity of different surface facets of ceria nanocrystals is important for designing an efficient catalyst. Especially in liquid-phase reactions, where surface interactions are complicated, direct investigation in a native environment is required to understand the facet-dependent redox properties. Using liquid cell TEM, we herein observed the etching of ceria-based nanocrystals under the control of redox-governing factors. Direct nanoscale observation reveals facet-dependent etching kinetics, thus identifying the specific facet for oxidation that governs the overall etching under different chemical conditions. Under each redox condition, the contribution of the predominant facet increases as the etching reactivity increases.

Ceria (CeO₂) is a widely used catalytic material in both gas- and liquid-phase reactions owing to its unique redox property. The low redox potential of Ce⁴⁺/Ce³⁺ enables facile switching between them, compensated by the lattice oxygen transport to the surrounding environment. Such lability of the surface activity of ceria in liquid-phase catalytic reactions, a method to directly observe the redox behaviors of different surfaces in a chemically controlled liquid is required.

The development of liquid cell TEM (LCTEM) has enabled the real-time observation of chemical reactions of nanoparticles. In particular, recent LCTEM studies have shown that reducible oxides undergo dissolution by surface reduction. Herein, we use LCTEM to investigate facet-dependent etching of ceria-based nanocrystals with controlling major redox-governing factors such as cationic alloying and the oxidizing power of the liquid. Quantitative analyses of individual nanocrystal etching combined with first-principles calculations elucidate that the predominant contribution of active facet governs the overall etching rate, regardless of the different mechanistic pathways.

Crystalline ceria and ceria-zirconia (CeO₂–ZrO₂) nanocrystals dispersed in H₂O, denoted as Ce/H₂O and CZ/H₂O respectively, were loaded in a static-type liquid cell to image their etching, as shown in Figure 1a and Movies S1–S2 (Figures S1 and S2, Supporting Information). Introducing a small Zr⁴⁺ ion into ceria is known to enhance the oxygen storage capacity by facilitating lattice oxygen transport. In addition, the etching of ceria nanocrystals in an oxidative environment was also studied with ceria dispersed in 30% H₂O₂(aq), denoted as Ce/H₂O₂ (Movie S3). Among nanocrystals observed in the field of view, isolated particles of ~25 nm in size, and showing parallelogram projection with a similar degree of truncation at the corners, were selected to quantitatively compare the etching of the same surface under different chemical conditions (Figure S3, Table S1).

Received: September 3, 2019
Published: October 23, 2019
consisting \{111\} faces with \{100\} truncation at corner sites (Figure 1b, Figures S4–S7).4a,13

The representative etching of nanocrystals with the fastest etching rate among several trajectories measured in Ce/H\textsubscript{2}O\textsubscript{2}, CZ/H\textsubscript{2}O\textsubscript{2} and Ce/H\textsubscript{2}O\textsubscript{2} are shown in Figure 1c, 1d, and 1e, respectively (Movies S1–S3). The main edges of \{111\} and truncated facets of \{100\} mainly contribute to the overall etching, while the etching of the \{110\} facet, corners with obtuse angles, is insignificant in all cases. The magnified etching trajectories shown in Figure 1c–e indicate that the overall surface-dependent etching behaviors vary significantly according to the different conditions regulated by lattice oxygen lability and redox environment. For both Ce/H\textsubscript{2}O\textsubscript{2} and CZ/H\textsubscript{2}O\textsubscript{2}, the etching of the truncated facet at the corner (\{100\}) is more pronounced than the case of Ce/H\textsubscript{2}O\textsubscript{2} that undergoes relatively homogeneous etching along the perimeter. Consequently, our LCTEM observations confirm that the etching of ceria-based nanocrystals in solution is sensitive to both the local surface structure and reaction conditions.

We quantified the etching rate of ceria-based nanocrystals by extracting the projected area in time-series TEM images (colored symbols in Figure 2a–i). Using a statistical method, the initial etching rate (r_{ini}) of each nanocrystal was calculated, as shown in Figure 2a–i (Table S2, Supporting Information). For every nanocrystal, the amount of etched area increases linearly over 40 s, consistent with the previously reported observations.14 In the later stage, a film is observed around the particle surface, which is presumably a diffuse layer formed from the etched species.11c,15 To further understand the etching dynamics and the corresponding redox properties of
different facets, we compared the areal change of the ‘{111} parallelogram’ (a parallelogram constructed by extending the {111} surface of the nanocrystal) to that of the original projected area (Figure 2j). Since shrinking of this parallelogram excludes the etching at the truncated {100} corner, the etching rate of the parallelogram solely represents {111} surface etching and is, therefore, always smaller than the etching rate of the original projected area. Along with the etched area of the original particle, the etched area of the {111} parallelogram is also depicted in Figure 2k.

We note that the etching rates of individual nanocrystals under the same chemical conditions are heterogeneous (Figure 2a–i). More interestingly, the trend of \(r_{\text{ini}} \) under each case correlates with the relative contributions of different facets. The etching rate ratios of the {111} parallelogram to the original projected area (bar charts in Figure 2a–i) represent the degree of etching along {111} facets. For Ce/H\(_2\)O\(_2\), the etching rate ratios are \(\sim 86\% \) when the \(r_{\text{ini}} \) is small, but the ratio significantly decreases to 68.9\% as the \(r_{\text{ini}} \) is doubled to 0.14%/s (Figure 2a–c). A similar trend in the etching rate ratio and the \(r_{\text{ini}} \) is observed in CZ/H\(_2\)O (Figure 2d–f). In contrast, for Ce/H\(_2\)O\(_2\), the etching rate ratio increases from 82.7\% to 96.6\% as the \(r_{\text{ini}} \) increases (Figure 2g–i). We deconvoluted the actual etching contribution of the {111} facet by mathematical conversion of the etching rate ratio of the {111} parallelogram and original projected area (Supporting Information). Figure 2k shows a plot of the ratio of the actual percentages of {111} surface etching and the overall etching, denoted as \(A_{\text{111}}/A_{\text{total}} \) and the \(r_{\text{ini}} \). For both Ce/H\(_2\)O\(_2\) and CZ/H\(_2\)O, the initial etching is faster as {111} facets contribute less, and {100} facets contribute more to the overall etching. An opposite trend is observed for Ce/H\(_2\)O\(_2\). Therefore, the overall etching kinetics is mainly governed by the predominant contribution of specific facets in different chemical conditions ({100} for Ce/H\(_2\)O\(_2\) and CZ/H\(_2\)O, {111} for Ce/H\(_2\)O\(_2\)). We also confirm that the observed facet predominance is still evident under different electron beam dose rate (Figures S8 and S9).

Our LCTEM observations allowed us to understand nanocrystal etching at a level that resolves individual facet contributions, and to identify the predominant facet governing the etching rate under each condition. Regardless of this complexity, there are significant differences in the overall activity under three reaction conditions. Among nanocrystals with almost identical sizes, the etching rates in CZ/H\(_2\)O and Ce/H\(_2\)O\(_2\) are faster than that in Ce/H\(_2\)O (Figure 3a).

Enhancement of the \(r_{\text{ini}} \) for CZ/H\(_2\)O and Ce/H\(_2\)O\(_2\) is also evident when three \(r_{\text{ini}} \) for each case in Figure 2a–i are averaged (Figure 3b). Also by comparing the \(r_{\text{ini}} \) of the particles with similar \(A_{\text{111}}/A_{\text{total}} \) values of \(\sim 90\% \) (Figure 2k), we conclude that the cationic alloying of Zr and the oxidizing power of H\(_2\)O\(_2\) enhance the etching reactivity of ceria nanocrystals.

The effect of Zr alloying on etching was investigated through ex situ energy dispersive X-ray spectroscopy (EDS) of etched CeO\(_2\)–ZrO\(_2\) nanocrystals. The atomic ratio of Ce to Zr at the nanocrystal core and the diffuse layer are 50:50 and 70:30, respectively, indicating that Zr is less prone to etching than Ce (Figures 3c and S10). Elemental maps of Ce and Zr also indicate that Zr localizes within the nanocrystal, while Ce is widely distributed over the nanocrystal boundary (Figure 3c). This result implies that the enhanced etching rate of CZ/H\(_2\)O\(_2\) is not due to Zr dissolution. Instead, Zr alloying enhances the lattice oxygen lability, \(^{1b,12}\) which presumably increases the etching rate.

In general, etching of ceria-based nanomaterials occurs universally in redox-active conditions, as confirmed by the reductive etching of CeO\(_2\) from ex situ experiments (Figure S11). The release of lattice oxygen by surface reduction under LCTEM imaging is the process governing the etching of Ce/H\(_2\)O and CZ/H\(_2\)O (Figure S12).\(^{17}\) First-principles calculations clearly indicate the lowering of the Ce binding energy at {100} and {111} surfaces by surface reduction of Ce\(^{4+}\) to Ce\(^{3+}\) (Figure 4), consistent with the previous study.\(^{11a}\) Therefore, the reductive etching of ceria-based nanocrystals in H\(_2\)O can be understood as a process of losing surface lattice oxygen and cerium due to the lowered binding energy of surface Ce\(^{3+}\). For such surface reduction, {100} surfaces are more active than {111} surfaces.\(^{9}\) The {100} surfaces are the ones that react more predominantly as the \(r_{\text{ini}} \) increases, as shown in Figure 2k. The increment of {100} predominance is probably due to the crystallographic nature of different surfaces. Owing to the sparsely located surface oxygen on {100}, repulsion between oxygen vacancies generated from reduction is less significant.
than on {111}. Thus, oxygen vacancies at {100} can be more easily accommodated as the etching rate increases.\(^3\)

In the Ce\(_{2}/\text{H}_2\text{O}_2\) case, surface Ce\(^{3+}\) creation during LCTEM imaging and oxidation of Ce\(^{3+}\) by \(\text{H}_2\text{O}_2\) occur simultaneously, producing surface Ce\(^{4+}\) and OH\(^-\) ions (Figure S13).\(^9\) To describe this situation, we calculated the Ce binding energies for \(\text{H}_2\text{O}_2\)-treated Ce\(_{2}/\text{O}_2\)-surfaces with various configurations of OH\(^-\) ions (right sections in Figure 4a–b). The Ce binding energies are predicted to depend on the location of OH\(^-\) ions (Table S3). Interestingly, the presence of OH\(^-\) ions near the surface allows surface Ce\(^{4+}\) ions to have much lower binding energies compared to that of reduced Ce\(_{2}/\text{O}_2\)–surfaces (middle sections of Figure 4a–b). In addition, the release of Ce\(^{4+}\) at \(\text{H}_2\text{O}_2\)-treated surfaces results in the formation of superoxo/peroxo species, indicated by the short O–O distance in Table S4 (Figures S14–S15), which may also expedite the etching. Therefore, the addition of the oxidation step to the overall etching pathway converts the reduced surface Ce\(^{3+}\) to weakly coordinated Ce\(^{4+}\), accelerating the overall etching of Ce/\(\text{H}_2\text{O}_2\).

The calculated work functions for the reduced (111) surface (4.95 eV) and reduced (100) surface (6.04 eV) indicate that the reduced (111) surface is more active toward oxidation.\(^{10}\) (111) is also the most active surface that predominantly participates in etching as the overall activity increases in Ce/\(\text{H}_2\text{O}_2\) (Figure 2k). We believe that the surface structure of (111) plays a key role in stabilizing the excess charge of oxidized Ce\(^{4+}\). Since the coordination number (CN) of Ce on the (111) surface (CN = 7) is higher than that of the (100) surface (CN = 6), (111) can more effectively dissipate the excess charge than (100).\(^{10}\) The ease of forming additional surface Ce\(^{4+}\) can increase the predominance of (111) in an oxidative environment.

In summary, we report the different etching behaviors of ceria-based nanocrystals under the control of redox-governing factors using LCTEM. The analysis of the etching behavior at the facet level reveals that the predominance of an active facet governs the overall etching rate, under both reductive and oxidative conditions. The experimental platform introduced here can be extensively exploited to understand the redox properties of nanomaterials in realistic liquid environments.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b09508.

Materials and methods, computational details, and supporting figures and tables (PDF)

Movie S1: *in situ* LCTEM movie of CeO\(_2\) nanocrystals etching under H\(_2\)O\(_2\) environment (MP4)

Movie S2: *in situ* LCTEM movie of CeO\(_2\)–ZrO\(_2\) nanocrystals etching under H\(_2\)O\(_2\) environment (MP4)

Movie S3: *in situ* LCTEM movie of CeO\(_2\) nanocrystals etching under H\(_2\)O\(_2\)(aq) environment (MP4)

AUTHOR INFORMATION

Corresponding Authors
matligen1@snu.ac.kr (K.K.)
thyeon@snu.ac.kr (T.H.)
jungwopark@snu.ac.kr (J.P.)

ORCID

Jongbaek Sung: 0000-0002-9294-3246
Byung Hyo Kim: 0000-0002-4098-0053

Kisuk Kang: 0000-0002-8696-1886
Taeghwan Hyeon: 0000-0001-5959-6257
Jungwon Park: 0000-0003-2927-4331

Author Contributions

J.S. and B.K.C. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by IBS-R006-D1. J.P. acknowledges the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1C1B2010434, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877). J.S. and J.P. acknowledge support by the Samsung Science and Technology Foundation under Project SSTF-BA1802-08 for the method development for data analysis and characterization. K.K. acknowledges the support of IBS-R006-A2 and the NRF grant funded by the Korea government (MSIP) (2018R1A2A1A05079294). We thank Insung Kong for providing statistical backgrounds.

REFERENCES

